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Abstract

Racket sports such as badminton and tennis are played globally
and are popular in virtual sports experiences. Although commer-
cial systems and research prototypes have looked at improving the
sensation of impact for virtual sports, movement guidance remains
essential to improve the stroke quality. Existing vibrotactile feed-
back strategies provide extrinsic vibrations to guide movements,
which can feel unnatural and increase cognitive load. In contrast,
motion-coupled vibrations are perceived as self-generated, intrinsic
and have shown promise in creating embodied tactile experiences.
However, their role in motor learning is not yet understood. We
present VibRacket, a prototype mountable on rackets that provides
extrinsic and intrinsic vibrotactile feedback for controlled and ballis-
tic movements. VibRacket integrates an IMU and vibration actuator
to deliver guiding, error-enhancing, and embodied vibrotactile feed-
back. VibRacket also includes a graphical interface for customizing
orientation-based vibrotactile patterns. We outline the design and
implementation of VibRacket and discuss its potential for motor
learning.
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1 Introduction

Racket sports like Tennis, Badminton and Table-Tennis are among
the most common sports played in the world and are turned into
common virtual experiences. For example, Wii Sports, which fea-
tures both tennis and table-tennis, and Eleven Table Tennis VR,
which focuses only on table-tennis, are among the best-selling
games [24]. One aspect of the sport is to provide realistic experi-
ences of hitting the ball or shuttle, which these games achieve using
controller vibrations. But these controller vibrations are abstract
and need to be interpreted by the user, increasing their cognitive
load [7] and hence research has looked at designing custom devices
using compressed air propulsion jets [24], fingertip skin deforma-
tion [9], impedance type kinesthetic feedback [5], tendon-based
robots [13], and multimodal feedback [11] to provide force sensa-
tions similar to those of balls or shuttles hit with the racket.

Another important aspect to improve the impact of the racket
with the shuttle is that of performing high quality strokes. Trainers
typically improve stroke quality by physically guiding novice play-
ers. However, physical feedback can interfere with the movement
being performed. Vibrotactile feedback is one way of providing
movement guidance for motor learning, which primarily uses ex-
trinsic feedback strategies like constructive and error-enhancing
feedback [1, 12, 20]. Constructive (or guiding) feedback provides
vibrotactile cues that assist users in performing the correct move-
ment or trajectory, thereby reducing errors and supporting early
skill acquisition [1]. In contrast, error-enhancing feedback exagger-
ates errors, encouraging users to actively correct their performance
and thereby promoting deeper learning and better retention [3, 23].
Vibrations on the body are used to indicate these errors [26]. How-
ever, these vibrations are not generated by the person performing
the movement (low sense of agency) [19] and hence are probably
perceived as extrinsic to the person.

On the other hand, when we explore textures or material proper-
ties (e.g., crushing a piece of paper), the vibrations at the fingertips
are perceived as more intrinsic and embodied, contributing to the
creation of the material experience [18]. One explanation could be
that these vibrations are coupled to user motion, and thus are per-
ceived to be embodied, intrinsic and self-caused [15, 17]. Research
shows that artificially generated vibrotactile pulses coupled to user
motion are still capable of eliciting embodied material and textural
experiences [17]. These motion-coupled vibrations have been used
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to induce a sensation of movement in the absence of it [8]; simu-
late texture experiences in air and on smooth sliders [17, 21, 22];
and create compliance experiences on rigid objects by coupling
vibration with user applied pressure [10, 27, 28]. Recent research
shows that the perceptual mechanisms of sense of agency [14]
and sensory attenuation [4] contribute to motion-coupled vibra-
tion feeling more intrinsic [15, 16]. Specifically, motion-coupled
vibrations are perceived to be self-caused (higher sense of agency),
and since they are perceived to be self-caused, the vibrations are
attenuated, leading to an intrinsic experience of feedback. However,
motion-coupled vibrations, which are perceived to be embodied,
have not been explored as a feedback strategy to provide movement
guidance.

Therefore, we present VibRacket, a first prototype capable of
providing embodied vibrotactile feedback on a badminton racket.
VibRacket is a mountable system with an IMU sensor as well as
electronics to render vibration feedback on rackets. With VibRacket
we demonstrate three different strategies of rendering vibrotactile
feedback, namely: guiding, error-enhancing and embodied feed-
back. VibRacket can also be integrated with a GUI, which can help
users create their own vibrotactile patterns for different racket ori-
entations. VibRacket demo’s primary aim is to showcase embodied
vibrotactile feedback through its implementation, and potentially
influence the perceived racket movement with and without the
feedback. The embodied feedback unlike the guiding and error-
enhancing feedback does not need to be interpreted and aims at
changing racket movements. The demo also serves as a proof-of-
concept for future motor-learning studies to investigate if embodied
vibrotactile feedback can enhance stroke-learning outcomes for
novice badminton players. The following sections describe the de-
sign rationale, the implementation details, the demos which will be
presented and the future scope and bigger questions this research
aims to investigate.

2 Design Rationale

Vibrotactile feedback for movement guidance can take various
forms, including guiding (assistive), error-enhancing (perturbing),
corrective (reactive error signaling), embodied (intuitive), and ter-
minal knowledge-of-results, each supporting different stages and
goals of motor learning. Out of these, terminal knowledge-of-results
feedback is provided after the intended action and is not often used
for teaching badminton strokes to novice players since they need
deliberate feedback by moving their hand in the intended trajectory
during the movement .

On the other hand, the other forms of feedback are usually pro-
vided when the trainee is performing the movement. Extrinsic
feedback (guiding, error-enhancing and corrective) is shown to be
useful for reducing errors, supporting early skill acquisition, and
promoting deeper learning for motor tasks. However, with extrinsic
vibrotactile feedback—where vibrations are decoupled from a user’s
actions—often suffer from disconnection and abstraction that limit
their utility in motor skill learning. Moreover, research shows that
while external vibration can momentarily improve accuracy, its
continuous and frequent use may lead to guidance dependency
and diminishing performance once feedback is withdrawn [25].

IN. Sabnis mentions reflecting on 5 years of teaching badminton professionally.
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Furthermore, extrinsic signals can impose additional cognitive load,
as users must consciously interpret artificial cues that lack natural
integration with their movements [7].

In contrast, intrinsic or embodied vibrotactile feedback for motor
learning—where vibrations are motion-coupled and perceived as
self-generated—holds significant promise. Such feedback leverages
sensory attenuation mechanisms [16] while improving the sense of
agency [15]. This alignment with natural sensorimotor processes
can enable richer, more intuitive learning experiences and open
new opportunities for embodied interaction designs for motor-
learning in racket sports where embodied action and feedback are
tightly interwoven. Hence, we created VibRacket to enable users
to compare different types of feedback while using a badminton
racket. Although the initial goal of VibRacket is to demonstrate the
implementation and highlight the perceptual ditferences between
extrinsic and embodied feedback, the larger goal is to investigate
whether embodied vibrotactile feedback is able to influence stroke-
learning outcomes for novice badminton players.

3 VibRacket

We present VibRacket, which can render guiding, error-enhancing
and embodied vibrotactile feedback on a badminton racket. We
briefly explain the algorithm, the graphical user interface, the hard-
ware, and the communication protocol used to augment the move-
ment experience. 2

3.1 Firmware

Coupling vibrotactile pulses to user action has shown to elicit em-
bodied material experiences [17]. A 9-degree of freedom inertial
measurement unit (IMU) is placed on the racket to measure its ori-
entation in the X, Y, and Z axes as the racket moves in air or makes
impact with a shuttle. This orientation on each axis is divided into a
discrete number of bins. When the orientation changes sufficiently
that the sampled sensor value enters a new bin, an AC pulse is
generated, as shown in Figure 1-left. Based on the changes in the
measured orientation, pulses are generated. That is, if the orien-
tation changes fast, pulses are generated rapidly, whereas if the
orientation changes slowly, the pulses are generated proportionally
slowly. The orientation of each axis is sampled individually, and
specific vibrotactile pulses can be rendered based on that axis only.
Each vibrotactile pulse can be configured using the GUI parameters.

3.2 Graphical User Interface

We modified a two-window Graphical User Interface (GUI) used
in Sabnis et al. [18] with Processing version 4.0, as shown in Figure 2.
Participants used the Racket Tactile Symbol Designer window of
the GUI to design sequences of vibrotactile effects perpendicular to
each axis of the IMU. A racket with the three axes is visualized in the
GUI to assist with the orientation of the design. The other window
of the GUI, called the vibrotactile pattern designer, which provides
control over a set of vibration parameters. The vibration design
parameters of the GUI screen can help designers to understand
and assist them in designing motion-coupled as well as continuous
vibrations effectively. These continuous vibrations are similar to

2The GUI and M5 Echo Dots sensing + actuation pipeline can be found here: https:
//github.com/sensint/VibRacket
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Figure 1: The left figure visualizes the binning algorithm in which the vibrotactile pulses are generated based on the orientation
changes of the IMU (pitch: x-axis, yaw: y-axis, roll: z-axis). The right figure shows VibRacket with the IMU sensor and the M5

Atom Echo vibration pipeline.

the vibration feedback used to provide constructive or destructive
movement guidance, whereas the motion-coupled vibrotactile feed-
back has been shown to induce a more embodied experience of
movement [21]. We also added the functionality of using asymmet-
ric vibration which has shown to induce sensations of pulling (also
known as pseudo forces) to be a design element for the vibrotactile
augmentation on the rackets [2, 6, 16]. The motion-coupled and
continuous asymmetric vibrations enable experimenting with two
ways of rendering pseudo forces. Participants can create their de-
sired vibrotactile effects and can switch to the Racket Tactile Symbol
Designer window to assign these effects to slot(s) in the sequences,
where each sequence represents the absolute orientation range of
each axis. The upload button sends the vibrotactile patterns to the
hardware mounted on the racket. Saving and Loading buttons help
to save and load a previously saved design, respectively. The clear
all button stops the augmentation of the racket and the vibrotactile
pattern is removed.

3.3 Hardware

We used a commercially available badminton racket (Yonex As-
trox) and added the sensing and actuation pipeline as shown in
Figure 1-right. BNOO085 is used as an IMU to measure the orienta-
tion, while the ‘Hapcoil one’ by Actronika as the actuator to render
the vibration patterns.

We use three different pipelines to trigger vibrations, each with
its own peculiarity:

e Haptic Servos [17]: Haptic Servos are shown to keep the
delay below 5 milliseconds, which can be crucial to give a
perception of real-time embodied feedback. We use Teensy
4.1 with pt8211 digital to analog converter and voltage ampli-
fier (PAMB8403, Visaton) to generate the audio signals before
feeding into the actuator. This pipeline will be used to inter-
face with the GUL

e M5 Atom Echo: M5 Atom Echo (esp32) platform enables a
compact form factor with Wi-Fi and Bluetooth connectivity
options and has an onboard amplifier.

e SEEED XIAO sense nrf52840: This pipeline provides a com-
pact form factor since it uses the onboard IMU (LSM6DS3TR)
along with an amplifier (MAX98357) and can be connected
using Bluetooth.

All three systems will be demonstrated during the demo. The cur-
rent locations of the sensor, microcontroller, and actuator are based
on the preferences of the authors, however they are not fixed and
hence we will bring modular mounts for participants to try differ-
ent configurations and elaborate on which works best for them. To
provide feedback, we will define a range of movement trajectories
for the badminton serve (under-arm) which would be used as base-
line to compare the user trajectories with and render the desired
vibrotactile augmentation.

3.4 Interfacing Between GUI and VibRacket

For a part of our demo, we enable participants to experience the
designed vibrotactile patterns as well as design their own patterns
during different racket movements. The communication protocol
(inspired from Sabnis et al. [18]) is used to interface the GUI with
the electronic system mounted on the racket to design the vibrotac-
tile patterns. The electronic system receives messages from the GUI
via a serial interface and assigns them to the respective orientations
of the IMU. These messages are ASCII strings and control-messages
to modify the system’s state and data-messages to transfer the vi-
brotactile effects and effect sequences to the corresponding axes
of the inertial measurement units. The IMU axes are configured
accordingly to render the vibrotactile patterns as and when a move-
ment around that axis is detected. The microcontroller assigns the
orientation along the three individual rotation axes, and the ac-
tuator renders vibrotactile pulses according to the selected effect
sequence and parameters that were assigned.

4 VibRacket Demo

We propose to demonstrate VibRacket in three parts. The demo is
targeted towards sports enthusiasts who are familiar with racket
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Figure 2: The Graphical User Interfaces with two screens is shown. The left screen is a vibrotactile effect generator which
can be used to switch between modes of continuous (extrinsic) and motion-coupled (intrinsic) vibrotactile feedback. Further,
the vibration parameters of waveform, frequency, amplitude, and duration can be customized as desired. The right screen
(Racket Tactile Symbol Designer) is used to apply the effects to the desired axis orientation (pitch: x-axis, yaw: y-axis, roll:
z-axis). Different effects can be assigned to different sensor ranges.

sports, haptic experts and other HCI researchers. The first part is
targeted at the overall audience to show the effects of vibrotactile
augmentation on perceived racket movement, while the second
part is targeted towards designing your own vibrotactile patterns
and how different vibration patterns and parameters affect the
perceived racket movement. The final part will show three different
feedback strategies: constructive, error-enhancing and embodied.
We expect the demo parts to be performed in order, but reversing
this order or doing other tasks is not an issue. All the parts together
would need around five to ten minutes per participant.

Procedure. A presenter will be physically presenting the demo at
the assigned booth. There would be two/ three badminton rackets
so that multiple people can experience the demo in parallel. We
will also bring some shuttles for participants to experience hitting
a shuttle with and without vibrotactile augmentation.

Part 1: VibRacket with and without vibrotactile augmenta-
tion. In this part, participants will move a badminton racket in
multiple directions, as they would typically move a badminton
or tennis racket. Then, the system will automatically render vi-
brotactile augmentation to enable users to experience their move-
ment in more detail. They can perform different movements and
experience how they feel different vibrotactile feedback moving
in different directions. They can also hit a few shuttles with and
without vibrotactile feedback to experience the differences made
by haptics in movement perception. When experimented within
authors, the vibrotactile pulses using the algorithm described above,
felt like it is resisting the movement and induce a feeling of moving
the racket through rough and bumpy materials. Users also felt that
the racket feels heavy with vibrotactile augmentation.

Part 2: Design your own Augmentation on VibRacket. In the
second part, participants can create their own material experiences
along different axes of the racket movement using the GUI and

feel them by moving the racket. They can also experience some
pre-defined symbols to experience what helps semi-professional
badminton players to train during shadow practice and for novice
users to learn the serve movement in Badminton. Presenters will
encourage participants to design as many experiences as they wish
to, mostly to demonstrate how different vibration parameters shape
the overall experience of moving the racket.

Part 3: Experiencing ditferent feedback on VibRacket. The
final part will present three feedback strategies on a predefined
movement. Guiding feedback will continuously indicate partici-
pants’ deviation from the predefined movement, with vibration
amplitude increasing proportionally to the degree of deviation. In
contrast, the error-enhancing feedback will increase the amplitude
of continuous vibration as the error is reduced (i.e., doing the right
movement would have the strongest vibrotactile feedback) and
vice versa. The final feedback strategy is of providing intrinsic (em-
bodied) vibrotactile feedback using motion-coupled vibrations. We
believe that intrinsic feedback would interfere less with the de-
sired movement of the participants while providing the necessary
correction.

5 Future Scope and Bigger Questions

VibRacket opens up several directions for future exploration in the
design and application of vibrotactile feedback for racket sports. A
key question is how different feedback strategies—guiding, error-
enhancing, and embodied—can be effectively combined or provided
in sequence to support motor learning across varying levels of
expertise. Additionally, how can embodied vibrotactile feedback
reinforce immersion in VR racket sports while combining more
realistic simulations of ball or shuttle impact? Furthermore, under-
standing how different feedback strategies influence the sense of
agency, and how embodied vibrotactile feedback could extend to
other movements, and sports, is an interesting research area.
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Future work includes designing algorithms capable of generat-
ing perceivable vibrotactile cues during ballistic movements (like
badminton smash or tennis serve), where the duration of pulses of
the motion-coupled vibration can fall below perceptual thresholds.
Investigating optimal actuator and IMU placement on the racket,
as well as designing actuation patterns and metaphors that convey
meaningful information (e.g., stroke quality or impact force), could
further enhance training outcomes. Finally, empirical studies in
the lab (using motion-capture systems) and also on the court for
different levels of expertise of players, will be essential to evaluate
and optimize these feedback strategies.
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