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Figure 1: The current study investigates the experience of agency when creating images using generative AI. Resulting images
range from uninteresting to awe-inspiring to jarring.

ABSTRACT
The increasing proliferation of AI and GenAI requires new inter-
faces tailored to how their specific affordances and human require-
ments meet. As GenAI is capable of taking over tasks from users
on an unprecedented scale, designing the experience of agency –
if and how users experience control over the process and attribu-
tion of the outcome – is crucial. As an initial step towards design
guidelines for shaping agency, we present a study that explores
how properties of AI-generated images influence users’ experience
of agency. We use two measures; temporal binding to implicitly
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estimate pre-reflective agency and magnitude estimation to assess
user judgments of agency. We observe that abstract images lead
to more temporal binding than images with semantic meaning. In
contrast, the closer an image aligns with what a user might expect,
the higher the agency judgment. When comparing the experiment
results with objective metrics of image differences, we find that
temporal binding results correlate with semantic differences, while
agency judgments are better explained by local differences between
images. This work contributes towards a future where agency is
considered an important design dimension for GenAI interfaces.
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1 INTRODUCTION
Generative artificial intelligence (GenAI) has been hailed for its
potential to fundamentally transform human society [1, 17, 101]
and has become a topic of high interest within the HCI community
[18, 81, 84]. One area of discourse is the intersection between GenAI
and creative practices like image or text generation [73]. The impact
of GenAI on creative fields has sparked intense debate, ranging
from criticism for its potential to replace human artists and writers,
to praise for its ability to democratize content creation [29].

This discourse around GenAI predominantly focuses on tech-
nical and legal considerations, such as the scale and sources of
training data and the legal implications of generated content. These
discussions often ignore the experiential dimension of interacting
with GenAI, specifically, how users subjectively experience agency
– control over the GenAI process and attribution of the outcome.
There is a complex interplay between technical, legal and experi-
ential properties of interacting with AI, which are all crucial yet
distinct dimensions to consider.

Moreover, the relationship between user agency and the effec-
tiveness of the AI algorithm presents inherent tension. While gen-
erating novel, unexpected solutions is a valued capability of GenAI,
it inherently requires users to relinquish detailed control over the
process. Even though human control is a desirable design goal in
human-computer interaction (HCI), one might reasonably argue
that good GenAI necessarily reduces users’ control.

This suggests that for the interaction with GenAI, special atten-
tion should be given to how the interface design deals with users’
experience of agency. For example, it might be desirable for an
application to provide a heightened sense of agency for users to
experience a creative flow, while for another application, it may
be desirable for users to feel less agency when the AI is active, to
prevent a confusion of attribution. The experience of agency then
becomes a design material to create desirable GenAI interfaces.

This paper explores this intersection of the experience of agency
and GenAI in the context of image generation. Through an ex-
perimental platform based on DragGAN [68], we examine how
deviations from user expectations in AI-generated images affect
perceived agency. Our study contrasts two scenarios: a realistic
condition where the AI alters the positioning of human and animal
faces in images as directed by the user, and a changed condition
where the AI additionally transforms these faces – for example,
a lion might become a fox – thereby introducing novel content
not requested by the user into the output. We supplement the two
conditions with two control conditions in which distorted and com-
pletely abstract images are generated, respectively. We measure
the difference in experienced agency for all conditions using both
implicit measures to capture the pre-reflective sense of agency and
explicit measures to capture the judgment of agency.

We also analyze the differences between images from all four con-
ditions using four objective metrics (l1, Histograms, LPIPS, DINO)
and compare these measures to the experimental results. The re-
sulting data is compatible with the hypothesis that user judgments
are influenced by changes in local features of the images, and the
hypothesis that pre-reflective sense is based on large semantic dif-
ferences in images.

Our investigation into the subjective user experience of agency
(Figure 1) when interacting with GenAI contributes to the broader
discourse on how we, as a culture, wish to engage with artificial
intelligence.

2 RELATEDWORK
This section provides an overview over agency and a review of
current research in the field. It also gives an introduction to GenAI
and methods for shaping image generation.

2.1 Agency
The sense of agency, as discussed in psychology and cognitive
science, is our experience of control of the world around us as we
act in it [37]. This sensation operates subconsciously; interestingly,
it is often most noticeable when absent. When we acknowledge our
actions with statements like "I did that", it is not just about taking
credit for our actions, but also about expressing belief in our ability
to control and taking ownership over and responsibility for the
actions in our everyday lives [21], all of these aspects of agency
influence how we see and interact with the world.

Our sense of agency forms early on in life. Within the first
3-6 months, young infants learn that their movements can have
an impact, e.g., shaking a rattle causes a noise. This encourages
exploration, and research suggests that this in turn helps infants to
develop greater control of movement and also a sense of agency [8].
Similarly, infants also experience agency through eye contact and
episodes of shared attention with their parents. They respond to and
mirror gaze direction and affective signals, fulfilling the children’s
need for self-efficacy [70]. The experience that one’s actions have
an effect on the world and on other people is foundational to one’s
ability to navigate most aspects of life [69].

Our sense of agency is malleable by context [65]. For exam-
ple, when using an Ouija board, people often feel reduced control
over the planchette, which can be an eerie experience [5]. Other
activities, such as gambling, can create situations where people
experience more control than they actually have [40]. Such over-
and underestimates of agency can be explicitly designed. For exam-
ple, in HCI, studies have demonstrated that the latency with which
one receives feedback [10, 94] and the selection of input modality
[11, 12, 21, 57] both have a strong effect on perceived agency.

The importance and fragility of the sense of agency indicate that the
design of our direct environment and the technologies within it should
provide and support the experience of agency. Research shows that
different aspects of interactions influence the human sense of agency.
Our work aims to identify such aspects in the context of interactions
with GenAI – especially image generation.

2.1.1 Modelling and Measuring Agency. A commonly used frame-
work for understanding agency is the comparator model. It suggests
that the central nervous system functions as a control mechanism,
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Figure 2: To know if we have achieved a goal, we must com-
pare the desired state of the world with what we estimate
the state of the world to be (comparator A). To understand
if we ourselves achieved that goal or if other factors were
involved, we can draw a comparison with a prediction of our
actions (comparator B). Finally, comparing our prediction to
our desired state (comparator C) gives us information about
whether we can control the current system sufficiently to
achieve our goals.

optimizing behaviour to achieve desired outcomes. Actions modify
the world, and sensory feedback helps construct a model of this
changed state. By comparing the desired and actual states (Figure 2,
comparator A), adjustments can be made to reach an optimal state
[32, 89].

Our sense of agency is assessedwhen these desired and estimated
states are compared to an internal prediction of the consequences
of our actions [31]. Such an internal prediction is necessary because
with sensory information alone, one cannot distinguish between
actions caused by oneself and those caused by external factors. To
make such a distinction, one must compare the predicted outcome of
one’s action with the estimated state based on sensory information
(Figure 2, comparator B). If there is no discrepancy between the
states, then we can assume the state of the world was caused by
ourselves, while differences between prediction and estimation are
attributed to external forces. This comparison helps determine self-
attribution of our actions [32, 89]. Finally, we must also consider
comparing our desired state with the predicted state (Figure 2,
comparator C). This comparison is often seen as relating to our
sense of control: If even the prediction of the outcome of our actions
does not match our desired state, then we lack the control to achieve
this outcome.

An alternative theoretical position that downplays the specific
contribution of the motor system is put forward by Wegner et al.
[96–98]. In this view, the sense of agency is produced by a more
general-purpose cognitive system that monitors the relationship
between thoughts (i.e. intentions), actions and their outcomes, with
the mind inferring and reconstructing a path between conscious
intention and effect [96]. Here, the sense of agency is taken to be a
reconstructive inference that one’s intention has caused an external
event. Our mind essentially tells itself a story, one about the causal
link between our actions and their outcomes. If the story is plausible,
we infer (experience) a sense of agency. If it is not plausible, our
sense of agency is diminished. Wegner and Wheatley argue that
plausibility requires three conditions: priority, consistency, and
exclusivity [98].

In the present work, we assume a two-level model of agency: a high
level conscious agency judgment, which is influenced by a low level
pre-reflective sense of agency (Figure 3).

2.1.2 Agency Judgements. To determine if someone experiences
agency, we might simply ask. This approach was used by Nishida
et al. [67] when they investigated whether users might attribute
a computer’s action to themselves if the outcome matched their
intention. According to self-reports, if the interval between the
computer’s action and their own intention was small, users would
attribute a system’s action to themselves. However, when the dis-
crepancy between expected and actual outcomes grew too large,
users reported a diminished sense of agency. This aligns with the
predictions of comparator B (Figure 2) of the agency model dis-
cussed here.

In a subsequent study, Tajima et al. [90] examined a task involv-
ing a correct action and an incorrect one. Using the same method-
ology, they found that users tend to self-attribute correct outcomes
and attribute incorrect ones to the system. This suggests that, much
like the causal history-based model [98], additional factors, like cog-
nitive dissonance reduction or the social desirability of outcomes,
might influence one’s judgment of agency upon reflection.

These findings indicate that the sense of agency, as it arises from
interaction, and the judgment of agency, as reported upon reflection,
do not necessarily align [89]. There seems to be a bottom-up process
leading to a pre-reflective sense of agency and a top-down process
resulting in a judgment of agency [89] (Figure 3). Some argue that
only the top-down judgment of agency is relevant for HCI, as it is
a conscious experience. However, the judgment of agency seems
to build upon the sense of agency (e.g., [67]). Furthermore, it is the
factors leading to the bottom-up sense of agency that are primarily
under our control as interface designers.

The present study explores both the pre-reflective sense of agency
as well as explicit judgements of agency. However, as we believe the
judgements to be based on the sense of agency, our primary interest is
to better understand the bottom-up, pre-reflective sense of agency.

2.1.3 Measuring Pre-Reflective Agency. If we care about the pre-
reflective sense of agency, and we cannot ask people about it, how
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Figure 3: Sensory feedback (the information we infer from
the world and feed-forward cues, that is, the modeled ef-
fects of our actions) provides a sensorimotor representation
of agency (blue). Once we actively reflect on what has oc-
curred, we consciously make a judgment of agency (pink).
This judgment is informed by the pre-reflective sense of
agency, but is interpreted and shaped by personal goals, in-
tentions, thoughts, and social cues.
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do we measure it then? There are two measurable perceptual phe-
nomena often assumed to correlate with agency: sensory attenu-
ation [53] and temporal binding [22]. Sensory attenuation is based
on the observation that self-caused stimuli are experienced less
strongly than stimuli caused by external factors [53]. The strength
with which a stimulus is experienced, therefore, can correlate with
self-attribution of an action. Temporal binding refers to causally
connected events being experienced as closer in time than unre-
lated ones. In the context of the sense of agency, this refers to the
phenomenon where individuals perceive a closer temporal rela-
tionship between their actions and the resulting sensory outcomes
than is objectively the case [36]. Measuring the experienced time
interval between an action and its result can provide indicators of
agency. If the user underestimates the two events systematically,
one can assume temporal binding is experienced as well as a causal
connection between the user’s action and the result [22]. The two
most common ways of measuring those experienced time intervals
are the Libet clock and interval estimation.

The Libet clock shows a clock face without any numbers and a
clock hand. The participants are asked to observe the rotating clock
hand during the experiments and to report its position during the
action taken and an observed outcome. This method requires the
visual attention of the participant, which means the visual attention
cannot be drawn to another visual cue during the experiment.

Using the interval estimation method, the participants are asked
to report their estimate of the interval lengths (typically in millisec-
onds) [27]. This method is used in the study presented here, as it
does not require the visual attention of the participant, which is
needed for the images shown during the experiment.

As an implicit measure of the sense of agency, the literature often
refers to the phenomenon of temporal binding as intentional binding.
This is the term originally used by Haggard et al. [36], to highlight
that the intentionality of the action seemed to be important for
this phenomenon. In the present study, we use temporal binding to
estimate the pre-reflective sense of agency. We use interval estimation
to prevent conflicts of visual attention.

2.2 Generative Models
GenAI is based on generative models [39], which learn to capture
the distribution of samples in a training dataset to produce a practi-
cally unlimited number of new samples that follow this distribution.
This requires the model to mimic the potentially highly complex
structures and correlations in the data. As an example, consider a
large training corpus of photos of lions. A generative image model
successfully trained on this data is able to synthesize new images
that depict lions in a photo-realistic way. These images include
lions in different poses, some of which intricately correlate with,
e.g., the time of day (lions are more active at night). To capture
these complex correlations, generative models tend to implicitly
learn and represent useful, semantic knowledge about the data
[9, 30], e.g., lions sleep during the day. This intriguing property
makes them an appealing tool for interacting with content, since
one can operate on the basis of higher-level concepts rather than
use lower-level signal processing.

2.2.1 Generating Images. The concept of generative modeling is
old [60], but only with the ongoing advancements in deep learning

[34], it is now possible to create powerful models that are useful
outside the research lab or rather simple use cases [30]. While a
larger family of deep generative model types has been developed, a
significant amount of current machine-learning research revolves
around a small number of alternatives: Diffusion models [41, 74, 77,
78, 86, 88] mimic the data distribution using gradual de-noising;
Autoregressive Models generate samples piece by piece, where each
piece is conditioned on the already generated content [16, 33, 71,
75, 93]; and Generative Adversarial Networks (GANs) rely on a two-
player game between a generator and a discriminator [35, 45–48,
79, 80]. In principle, generative models can operate on any data
modality, as long as training datasets are large enough. However,
recently, a lot of attention has been paid to text [16], images [74, 78],
and videos [13, 42]. In this work, we focus on image generation.

2.2.2 Controlling the Generation. Synthesizing realistic, yet ran-
dom, images is not particularly useful. Typically, users want to
specify what the synthetic image should depict or, more generally,
interact with the GenAI to produce custom content. Technically,
there are multiple ways to achieve this goal. A popular approach is
conditioning and guidance, i.e., users provide an additional control
signal that steers the generation. Popular control modalities include
class labels [14, 25], text [15, 28, 79], and scribbles [7, 63]. Unfortu-
nately, such guidance signals are coarse-grained, and the user only
has a somewhat fuzzy and indirect influence on the generation.
Already existing (image) content can be used for conditioning as
well [43, 103], but severely limits creative freedom and expressivity.

Another line of work focuses on operations in the latent space of
the generative model [44], which oftentimes involves an inversion
step [2, 3, 76, 87]. In this latent space, simple decompositions are
surprisingly effective in finding interpretable directions to achieve
image editing goals [38, 82]. It is also possible to learnmore complex
trajectories [4], and specialized solutions exist for narrow use cases,
such as rotating faces [54, 92]. Also, for these approaches, editing
and generation granularity and/or diversity are severely limited
and do not allow full access to the broad scope of GenAI.

In contrast, geometric edits are more tangible and general. In par-
ticular, point-based manipulations allow direct control over which
image location moves where [26, 68, 95]. DragGAN [68] introduced
editing using an interleaved scheme of motion supervision and
point tracking that allows geometric edits with unprecedented
precision at interactive rates. Similar capabilities, yet without the
interactive speed, have recently been explored for diffusion models
as well [55, 66, 85]. In this work, we focus our attention on DragGAN
for its ability to provide users with precise, i.e., pixel-accurate control
over the image generation process, while operating at interactive rates.
This appealing combination, exposing prototypical idiosyncrasies of
generative models, thus provides a meaningful testbed for our investi-
gation of agency with GenAI.

3 STUDY RATIONALE
This study aims to provide a foundational understanding of how
users experience agency when a GenAI algorithm provides an out-
put that has features not requested by the user. We are specifically
focusing on GenAI image generation, and observing how different
visual properties of the generated images effect agency.
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Figure 4: Four different pairs of starting and target images. From top to bottom: realistic, changed, distorted, and abstract. In
between the starting image and target image, we show the visual flow computed using RAFT [91].

We consider this scenario relevant for understanding interac-
tions where GenAI provides creative input in a shared process.
Understanding how such interactions affect agency will provide a
foundation for future GenAI specific interfaces.

3.1 Why DragGAN
We intend to measure both the pre-reflective sense of agency and
user judgments of agency. Capturing the pre-reflective sense of
agency is difficult; it cannot be directly measured, rather it must be
inferred by other implicit measures. According to current literature,
this requires specific conditions to be met, such as having simple
and straight-forward tasks with one discrete point at which the
user takes action and immediate feedback that can be manipulated
in time [11, 21, 36, 64].

Furthermore, to better compare GenAI outputs that meet user
expectations to outputs that differ from user expectations, we re-
quire an algorithm for which we can fine-tune to generate images
with controlleable visual properties.

We have chosen DragGAN [68] as the approach that meets our
criteria. DragGAN allows users to edit images synthesized by a
GAN [35] using point manipulations. Provided with one or mul-
tiple start-target point pairs, the system optimizes a sequence of
images where the image contents at the start point(s) move to their

corresponding target point(s). Different from image warping, all
this happens while images stay on the manifold of realistic im-
ages. For example, if a nose should move left, the face must follow,
possibly revealing previously occluded parts of the face or the
background and changing shadows on the face to account for the
change in angle relative to the sun. These editing capabilities are
achieved by leveraging the prior knowledge trained into a GAN.
Any pre-trained GAN model can be used for this.

Depending on the pre-trained model, DragGAN also has other
interesting properties that we use for our study. If a target position
is correlated with another feature, dragging can lead to a change in
that feature. For example, in the case of a model trained on faces of
wild animals, if the starting image is a lion, and the training data
contains many images of foxes that have their noses at the bottom
of the image, dragging the lion’s nose to the bottom can turn the
lion into a fox. Furthermore, if the user drags a point to a space that
the model has no training data for, the image will initially distort
and finally completely warp into an abstract representation.

3.2 Research Questions & Image Qualities
Our primary research question asks "How is the human experience
of agency effected when GenAI provides an unexpected output?" To
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answer this question, we compare the experience of an image ma-
nipulation that produced a realistic, expected, target image to an
image manipulation, where DragGAN changes salient features of
the image, while preserving the interaction.

We ask a follow-up question "If there is a difference, is it because
the new image is semantically meaningful, or is it simply because
the image is different?" To answer this question, we introduce a
new type of image, where rather than a meaningful transformation,
the DragGAN distorts the image. Here, the final image still has some
resemblance to the original image.

Finally, we ask "Is there a difference between pictures with clearly
distinguishable semantic meaning and chaotic generation results?"
To address this question, we add a final image class, where we push
DragGAN to its limits, resulting in chaotic images without any
discernible semantic meaning.

We use the following definitions for the four categories:

Realistic. The animal or human from the original image is still
recognizable, and the change from the original image is a realistic
movement (e.g., turning the head to the right). It also matches the
position clicked on in the original image.

Changed. The animal or human in the resulting image looks re-
alistic and matches the position the participant clicked on in the
original image. However, it does not match the animal or human
seen in the original image. For example, a lion turns into a fox, or
an adult turns into a child.

Distorted. The lion’s or the human’s face becomes distorted when
moved to the point the participant clicked on. The position still
matches the position selected to some extent, but the image does
not change as expected.

Abstract. The original image is not recognizable at all anymore,
and the resulting image seems to show random shapes, colors, and
textures. These tend to be based on the colors and textures in the
original image. For example, in the human cases, the hair texture or
clothing color can still be visible. In the lion cases, the fur texture
and background colors tend to be recognizable. But, there are also
cases, where none of this is recognizable anymore.

Examples can be found in Figure 4.

4 IMPLEMENTATION
In this section, we present the implementation details of our ex-
periment, including the methodologies for image generation, the
computation of image metrics, and the experimental setup.

4.1 Image Generation
For this study, we restrict ourselves to a single point used for drag-
ging. We need to be able to control the latency between the partici-
pant’s interaction with the system and the resulting image. With
DragGAN, this is not possible in real time. The further the dis-
tance between the start and the end point, the longer it takes until
the final image is created and shown. Different models and image
resolutions also have an influence on the time needed until the
final image is created. Therefore, we decided to pre-render selected
images. For this, on each image, we selected a start point (usually
around the nose of the animal or human) and used DragGAN to

local

L1

LPIPS

Histogram

DINO

low-level

high-level

global

Figure 5: The chosen metrics describe image (dis)similarities
based on low- and high-level features and consider local or
global features.

render the final image for possible end points. For most images, the
result images of two adjacent pixels only showminor differences, so
we limited the scope of this by only rendering the resulting image
for every 8th pixel in each dimension. All images had a resolution of
512x512 pixels, which means for every starting image, 4096 possible
resulting images were pre-rendered with DragGAN.

Using the pre-rendered images has two advantages: First, users
can freely and interactively drag the pre-selected image feature (for
example, a nose), and second, we, the experimenters, can instrument
delay times and other parameters.

Having pre-rendered resulting images also allowed us to run the
study independently of the DragGAN software.

The images were selected from four different pre-trained Style-
GAN2 models:

• stylegan2-afhqwild-512x512 - Lions with changed (step size
= 0.001), distorted (step size = 0.001), and abstract (step size
= 0.1) qualities.

• stylegan2_lions_512_pytorch - Lions with realistic (step size
= 0.001), distorted (step size = 0.001), and abstract (step size
= 0.06) qualities.

• stylegan2-ffhq-512x512 - Humans with changed (step size =
0.001), distorted (step size = 0.002), and abstract (step size =
0.1) qualities.

• stylegan2-ffhqu-1024x1024 - Humans with realistic (step size
= 0.002), distorted (step size = 0.005), and abstract (step size
= 0.1) qualities.

Appendix A shows Table 1 listing the properties of all 48 starting
images that have been selected for pre-rendering, describing the
image seed within the model and the starting point, from which the
images have been rendered. For each species, two models have been
chosen, as it was extremely difficult to find images with changed and
realistic qualities within the same model. The starting images were
selected by manually exploring the options within each model and
picking starting images which resulted in target images featuring
the desired visual properties.

4.2 Objective Metric Calculation
To place the magnitude estimation and temporal binding results in
context, and to describe the differences between the image qualities
in a quantitative way, we computed several metrics to evaluate
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Figure 6: Distances calculated with four metrics (i.e., L1, histogram, LPIPS, and DINO) between the starting and the target
images for each condition, and ratio of the longest trajectory (i.e., max. length) and the distance between user clicks (i.e., click
distance).

differences between original and modified images: per-pixel dif-
ference (L1), correlation of RGB histograms (Hist.), a perceptually
calibrated distance metric based on learned features (LPIPS [104]),
and distance of features from a self-supervised vision transformer
(DINO [91]).

The image metrics were selected to cover a broad spectrum of
qualities. In particular, the metrics can be arranged on a 2D con-
tinuum that spans a space between local (L1, LPIPS.) vs. global
(Hist., DINO) and low-level (L1, Hist.) vs. high-level (LPIPS, DINO)
features, as shown in Figure 5. While local metrics consider dif-
ferences in image content with higher spatial selectivity, global
metrics aggregate information across the image before computing
distances. Metrics based on low-level features operate close to the
original signal (i.e., pixel values), while those based on high-level
features first lift the signal to a more abstract representation, which
typically allows to operate on a more abstract/semantic level.

Details of the calculations follow:

L1. We computed per-pixel absolute differences in RGB color space
and average the result across all pixels. This provides a local and
low-level estimate of how colors change.

Histogram Correlation. We computed a 3D histogram by assigning
pixels to one of 8x8x8 regularly spaced RGB color bins. The distance
between two histograms is determined by computing the Pearson
correlation coefficient. This metric describes a shift in global color
distribution. We inverted this measure to transform it into a differ-
ence metric.

LPIPS. This metric first feeds each image into a convolutional neu-
ral network (CNN) that has been pre-trained on large-scale data to
perform image classification. The intermediate features (internal
activations) of this network have been shown to be remarkably ex-
pressive: They have the emergent property that distances between
images computed in this feature space strongly correlate with hu-
man perception. Based on this observation, the LPIPS [104] metric
employs an additional calibration to match human perceptual judg-
ment even better. By design, this metric operates on a range of
features that correspond to different levels of abstraction: Features

from earlier layers correspond to rather low-level information—Do
edges in both images align?—while features from deeper layers tend
to encode semantic concepts—Do we see the eye of a lion at the
same location in both images?

DINO. This metric considers the cosine similarity between DINO
[19] features. DINO uses a teacher–student model where both mod-
els turn an image into a 384-dimensional feature describing that
image. During training, billions of images and many different crops
of each image are shown to the models. While the student gets to
see all the data, the teacher only sees a subset of crops. Additionally,
the teacher is forced to learn more slowly than the student. The core
objective in DINO is to make the student model’s features similar
to the ones of the teacher model for the same image, while ensur-
ing diversity across different images. This construction creates a
feature space where similar images have similar representations,
i.e., a a rather detailed "understanding" of the visual world is ob-
tained: Features of an image containing a pelican are vastly different
from images containing a house, but only slightly different from
images containing a tucan, yet still different enough to enable a
clear distinction between pelicans and tucans. Measuring similarity
of DINO features therefore gives a global, high-level estimate of
differences in image content. As with histogram, we inverted this
measure to transform it into a difference metric."

The raw data of each objective metric for each condition is provided
in Figure 6. Scatterplots showing low-level, high-level, local, and
global metrics are shown in Figure 7.

4.3 Optical Flow
To complement the above metrics, we also calculated optical flow.
This investigates image differences in terms ofmotion: How does the
original image need to be deformed to get the target image? Notice
that, in contrast to the other metrics discussed above, this analysis
is primarily focused on the image domain (position) rather than its
co-domain (color). Humans have been shown to perform reasoning
on the level of image deformations [83], and corresponding image
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Figure 7: Comparison of distance measurements based on metrics categories. While all categories can clearly separate image
pairs of the abstract condition, other conditions are not always linearly separable.

metrics have been explored [51, 52]. Analysis of motion is a natural
choice for the geometric approach of DragGAN.

We use the state-of-the-art optical flow estimator RAFT [91] to
compute per-pixel motion trajectories based on image sequences,
from the original image to the user-specified target image. Specif-
ically, we compute the optical flow between every two adjacent
images and concatenate the flow vectors to yield full motion trajec-
tories. To avoid clutter, our visualizations (Figure 4) show only a
subset of trajectories. An index showing the ratio of click distance
to trajectory length is shown in Figure 6 on the right.

4.4 Experiment Implementation
The study was implemented as a web application to make it ac-
cessible to the participants through a web browser on their PC
or laptop. For the implementation, the Javascript library jsPsych
[23] was used. This library helps in structuring the experiment and
collecting the data. In this web application, the starting image was
shown on an HTML Canvas element, with a half-transparent red
dot marking the starting point and half-transparent green rectan-
gles marking the clickable areas on the image. When an end point
was selected, the resulting image for the closest pre-rendered end
point was shown.

The participants were recruited and paid through Prolific1. Pro-
lific linked to the web application hosting the experiment. Once
participants completed the study, they were shown a code, which
they entered on Prolific to receive payment. This additionally al-
lowed the experimenters to access the participants’ demographic
data available on Prolific. This means that the web application itself
collected no demographic data. Only the participants’ informed
consents and the study data were collected.

The web application was hosted on a server provided by the first
author’s home institution. The collected data was also stored on
this server.

5 EXPERIMENT
Temporal binding and magnitude estimation were used to evaluate
the influence of the qualities of the outcome image on the implicit
feeling and the explicit judgment of agency. Temporal binding de-
scribes the phenomenon when people perceive an action and an
1prolific.co [accessed August 2023]

outcome as closer to each other in time than they objectively are,
which means that people perceive the time between the action
and outcome as shorter. In this study, this measure is used as an
implicit measure of the sense of agency by asking the participants
to estimate the time interval between their action and the outcome.
For this, the action and the outcome should be at discrete points in
time to have an unambiguous interval length between them. Using
interval estimation as a way to measure temporal binding is an
established method that is widely used [6, 24, 102]. This method
allows the participants to fully use their visual attention for the
images presented throughout the study. Even though it is difficult
for humans to precisely differentiate between intervals in millisec-
onds, we can see if systematic differences in the estimation errors
are present throughout the different conditions [27].

Magnitude estimation is amethodwhere the a participant assigns
a numerical value to the perceived strength of a certain stimulus
[59]. In this study, this measure is used as an explicit measure of
the judgment of agency.

To control the image qualities as a condition, we highlighted
pre-selected regions that would produce the desired visual prop-
erties with a green box (visible in Figure 8, leftmost image, top).
Participants were instructed to only click on a spot on the image
within these areas. For the lions, those areas summed to a total of
around 40k sq. pixels, split into two areas per image. For the human
images, it was more difficult to force certain outcome qualities,
which resulted in one smaller area per image. This is a limitation
due to the nature of the models these images were picked from.

5.0.1 Participants. Twenty-eight participants (12 male, 16 female)
aged 20 to 49 (M = 32.36, SD = 7.51) took part in the online study.
All participants were residents in the United Kingdom at the time
of the study, were fluent in English, and had normal or corrected
vision.

Three participants were removed prior to data analysis, as their
data indicated non-compliance with instructions. We recruited an
additional three participants. The demographics above are only of
those participants whose data was used.

prolific.co
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Figure 8: The procedure of the main part of the online study. The example image manipulation shows a starting image with a
lion, the red starting point on its nose, and two green clickable areas at the top of the image. It also shows an outcome image
based on the click position. The example is from the realistic condition. After the manipulation, the participants gave an
estimation of the interval between their click and the appearance of the resulting image, to measure temporal binding, as an
implicit measure for agency. They also rated how strongly they feel like they created this image explicitly.

5.0.2 Procedure.

On-boarding and training: The study was run online. It started by
providing general study background and task information. After
signing the consent forms, the participants began with a training
session on estimating interval lengths in milliseconds. For this,
a black circle outline was shown. After 50 to 850 milliseconds,
the circle outline turned into a full black circle. The participants
were asked to estimate the amount of time the outline was present
before it changed to a full circle. Then, they received feedback
telling them how long the interval really was. This procedure was
done nine times, with 50, 100, 200, 350, 450, 550, 700, 800, and
850 millisecond intervals in random order. These interval lengths
were chosen to cover the full range of options presented to the
participants when asking for their estimation. The same task was
repeated nine more times, without the feedback at the end, as a
baseline for participants’ interval estimates. In this situation, no
temporal binding was expected, as there was no action taken by the
participants. A second baseline measure was taken where temporal
binding was expected. For this, again a circle outline was shown to
the participants. This time, they had to click on the circle outline
to change it to a full circle. The participants were asked to estimate
the time interval between their click and the circle changing. This
was repeated nine times, too. In both baseline conditions, each
interval was 200, 450, or 700 milliseconds long, as those were also
the interval lengths used in the main part of the study.

Main Task: After completing the training and the baseline measures,
participants continued to the main part of the study: manipulating
images. In each round, participants saw an AI-generated image,
either a lion or a human. On each picture, we added a red circle to
indicate the starting point of the manipulation and one (humans)
or two (lions) green areas to indicate where on the image the partic-
ipants could click to change the image. These areas were necessary

to be able to control the visual properties of the generated image
the participant saw in each round, as described in subsection 3.2.

After a time interval of 200, 450, or 700 milliseconds, the image
changed based on the position of a participant’s click and based
on the visual properties selected for the current condition. After
the manipulation, a question popped up below the resulting image,
prompting each participant to give an estimation of the interval
between their click and the resulting image appearing. The question
presented possible response choices from 50 to 850 milliseconds in
50-millisecond steps. After selecting their estimation and clicking
the “continue” button, they were prompted to rate how strongly
they felt that they had created this image. This procedure can be
seen in Figure 8. In total, there were 48 rounds of image manipu-
lation - 24 with humans and 24 with lions. For each species, there
were six images in each of the four image qualities category, which
creates eight conditions with six images each. A visualization of
these eight conditions is shown in Figure 4. The species and out-
come qualities were balanced using a balanced Latin square.

6 RESULTS
In this section, we provide an overview of the generated images,
results from measures of agency, and contextualize these results
within the scope of our study.

6.1 Overview of Generated Images
The target regions used in the experiment were based on a subjec-
tive evaluation of the resulting images they produced. To highlight
that these regions did indeed lead to clearly distinct clusters, we
show the resulting distance measures per quality in Figure 6.

We show scatterplots of low-level, high-level, local, and global
metrics plotted against one another (Figure 7). The scatterplots
show clear linear separability for low-level and global metrics. It is
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Figure 9: Left: Standardized binding scores for the four different conditions of image qualities. The circles show the mean, and
the lines show a 95% confidence interval. There is a significant difference between abstract and changed as well as between
abstract and distorted. Right: Standardized magnitude estimations for the four conditions of image qualities. The circles show
the mean, and the lines show a 95% confidence interval. The differences are significant between all four conditions.

of note that the high-level metrics are not able to clearly distinguish
between realistic, changed, and distorted images.

6.2 Measures of Agency
6.2.1 Temporal Binding. The binding scores to evaluate temporal
binding were calculated by subtracting the interval estimate from
the respective actual interval length. Positive binding scores thus
indicate an underestimation of the interval and with this, temporal
binding for this interval.

To identify significant differences between the conditions, the
binding scores were standardized for each participant by first re-
moving the participant’s average response from each estimate and
then dividing each estimate by the standard deviation. Resulting
data is in standardized units. An estimate of one indicates that this
estimate is one standard deviation above the average estimate for
that user. This highlights differences between conditions, while
removing individual differences between participants. We then per-
formed a repeated measures ANOVA with qualities and species as
independent variables and standardized binding scores as a depen-
dent variable. Figure 9 shows the standardized binding scores for
each condition with a 95% confidence interval.

There was a significant effect of qualities, 𝐹 (2.386,64.422) = 5.312,
𝑝 = .005, 𝜂2𝑝 = .164. There was no significant effect for species,
𝐹 (1,27) = .394, 𝑝 = .536,𝜂2𝑝 = .014, and the interaction of species and
quality 𝐹 (3,81) = .619, 𝑝 = .605, 𝜂2𝑝 = .022. Figure 9 (left) shows that
the abstract condition received a higher average score than all other
conditions. A Bonferroni corrected post-hoc comparison indicated
that the difference between abstract and distorted was significant
(𝑝 < .001), as was the difference with changed (𝑝 = .024). Though
visual inspection appears to suggest a difference between abstract
and realistic this is not possible to confirm statistically, due to
correcting for multiple comparisons.

6.2.2 Magnitude estimation. A further repeated measures ANOVA
was done with qualities, and species as independent variables and

magnitude estimation as a dependent variable. As before, the es-
timation scores were standardized for each participant. We found
a significant effect of species, 𝐹 (1,27) = 4.963, 𝑝 = .034, 𝜂2𝑝 = .155,
and quality, 𝐹 (1.935,52.244) = 42.987, 𝑝 < .001, 𝜂2𝑝 = .614, but no
significant effect of the interaction thereof, 𝐹 (3,81) = 1.389, 𝑝 < .252,
𝜂2𝑝 = .049.

Figure 9 (right) shows the average and 95% confidence intervals
of these standardized estimates. The figure shows realistic received
the highest rating, followed by changed, distorted, and, finally, ab-
stract. A Bonferroni corrected Post-hoc test indicated that, except
for changed and distorted, all difference are statistically significant
at the p < .001 level.

6.3 Contextualization of results
To provide a qualitative intuition of what might be the underly-
ing properties of the generated images that caused the temporal
binding and agency judgment results, we provide visualizations
of these results correlated with the image difference measures we
calculated (Figure 10). To understand how strongly the movement
varied between visual properties of images, we provide the path
length as a function of the click distance. If the resulting value is
one, then the movement matched the distance requested by the
user higher or lower numbers indicate longer or shorter paths than
one would expect based on click-distance alone (see Figure 6, right).

It should be noted that this metric becomes more relevant in fu-
ture work which will investigate continuous input, and is presented
here for completeness and future reference.

7 DISCUSSION
The experimental results (Figure 9) show clearly distinct patterns
between temporal binding results and agency judgments. The tem-
poral binding task (Figure 9, left) produced two distinct clusters –
realistic, changed, and distorted images with less binding and ab-
stract images with more binding. The agency judgments produced
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in the magnitude estimation task (Figure 9, right) show highest
agency with realistic images and then increasingly reduced agency
for changed, distorted, and, finally, abstract images.

That the results are different is not surprising as both exper-
iments estimate different aspects of agency, as discussed in our
related work; however, it is interesting to reflect on what might
have caused the specific patterns we observed.

7.0.1 Initial Reflection.

Explaining Temporal Binding. Our experimental method, interval
estimation, is not ideal for determining if there was temporal bind-
ing2. Instead, the results (Figure 9 , left) should be interpreted as
differences in experienced binding across conditions. Literature
suggests participants likely experienced temporal binding in all
conditions [64, 100].

Why is binding significantly greater in the abstract condition
and similar in the realistic, changed, and distorted conditions? Since
the participants’ actions did not change, we must consider the out-
comes. Studies in cognitive psychology have shown that intention
and agency are not the only potential causes of temporal binding.
Factors such as causal relations, attention, and arousal can affect
time perception and influence binding [100]. We can dismiss causal
relations, as all conditions involved them; however, attention and
arousal do offer plausible explanations for the difference in the
abstract condition.

Explaining Agency Judgments. Magnitude estimation results suggest
a continuum of how closely output images match user expectations,
from realistic to abstract. The closer the image matches user expec-
tations, the higher the rating appears to be, aligning with Wegner’s
theory of agency, particularly consistency [98]. The realistic con-
dition produced outcomes most consistent with participants’ ex-
pectations. Consistency decreased in other conditions: In changed,
the face rotated and changed age or species; in distorted, the image
became warped but recognizable; in abstract, the image became
unrecognizable.

One interpretation of this data is that users reflected less on
their internal state while perceiving the image, but instead on the
image itself. Users might have estimated how much the target
image differed from the original image and provided their judgment
accordingly.

The calculated objective metrics provide further data for under-
standing the results of the subjective measures of pre-reflective
agency and agency judgments, which we will explore in the next
section.

7.1 Hypothesizing with distance metrics
Weprovide both subjectivemeasures of human experience—temporal
binding for pre-reflective agency and magnitude estimation for
agency judgments —as well as calculated calculated objective image
metrics—L1, Histogram, LPIPS, and DINO. This allows us to formu-
late tentative hypotheses and estimate if they are supported by the
data. To provide a visual overview of how the subjective measures

2This would require a Libet-clock-based task. We chose interval estimation to avoid
presenting participants with competing visual tasks.

and objective metrices relate, we provide plot all subjective and
objective measures in Figure 10.

Next, we will discuss four hypotheses we found useful in under-
standing the results. To avoid getting lost in details, we will discuss
the hypotheses primarily using Figures 6 and 7.

H1 Pre-Reflective Agency is based on raw image differences. One
method to characterize the changes in the image according to user
input is to quantify the modifications in the pixel values. On a global
level, we can measure changes by looking at the histogram of the
image, and, locally, we can measure changes based on the differ-
ence in color of individual pixels. The temporal binding measure
was unable to capture differences between realistic, changed, and
distorted conditions, but it highlights that the abstract condition
was clearly different (Figure 9). To claim that H1 is supported by
the data, we might look for similar patterns in the calculations of
low-level image metrics such as L1 and Histogram (Figure 6). While
the low-level calculated measures show that the abstract condition
is different from the other conditions, these measures also distin-
guish between the realistic, changed, and distorted conditions (see
scatterplot Figure 7, Low-level Metrics), which is not reflected in
the subjective measures. We argue that H1 is not supported by the
observed data.

H2 Pre-Reflective Agency is based on semantic image differences.
User input also has another effect: the content of the images changes.
A face might look in another direction, transform, or vanish alto-
gether. This changes the semantic content of the image, which is
captured by the high-level metrics LPIPS and DINO (Figure 6). We
can argue that the data supports H2 if we find a similar clustering
in the LPIPS and DINO calculations, which, indeed, we do (Figure 7,
High-level Metrics). We argue that H2 is supported by the observed
data. However, looking towards the similarity of the realistic and
changed condition, the difference needs to be sufficiently large to
produce a measurable effect.

H3 Agency Judgment is based on local image differences. Unlike the
two clusters we found in the temporal binding data, the magnitude
estimation data appears to linearly relate to the different image
properties, clearly capturing differences between all four conditions
(Figure 9, right). As the literature suggests that Agency Judgment is
based on higher-level cues, such as intentions, thoughts, and social
context, we did not expect to find correlations to these results in
the calculated measures. However, while not expected, we found a
pattern similar to the magnitude estimation results when looking
at the local measures L1 and LPIPS (Figure 6 and the scatterplot in
Figure 7, Local Metrics). We therefore argue that H3 is supported
by the observed data.

H4 Agency Judgment is based on global measures. As a counterpoint
to H3, we might hypothesize that agency judgment is also based
on global measures. We argue that this is the case if we find a
similar linear relation between agency judgments and calculated
global measures Histogram and DINO (Figure 6); however, this is
not found in the data. In fact, as can be seen in the scatterplots in
Figure 7 (Global Metrics) and in Figure 10 (Magnitude Estimation vs.
Histogram and DINO), this is not the case; instead, we found a non-
monotonous relation. We therefore argue that H4 is not supported
by the observed data.
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Figure 10: Scatterplots of objective measures of image differences plotted vs. temporal binding results andmagnitude estimation
results. The x-axes indicate the normalized differences of image pairs, i.e., higher values refer to higher dissimilarity.

In Summary (and a word of caution...) The hypotheses we discuss
are merely a subset of potential questions we could ask, and surely
do not adequately reflect the full complexity of our observations.
However, they form useful take-home messages that might be used
as a basis for future studies: The pre-reflective sense of agency cor-
relates with semantic image differences, while agency judgments
correlate with the magnitude of local differences between images.
Having said this, correlation is not causation. We provide the dis-
tance metrics as a tool to hypothesize and theorize. We believe that
this may provide a useful starting point for future experiments that
can investigate these ideas in a causal manner. What we provide
here is purely exploratory and should not be considered more than
data-driven speculation.

7.1.1 But what about trajectories? The trajectories shown in Fig-
ure 4 (center) are a fundamentally different way of looking at the
differences in visual properties. Here, we look at how features of
the image move in space, rather than analyze the image in its color
domain. This has been shown to closely match how humans think
about images [83]. We found results that look seductively similar
to the temporal binding results – short organized trajectories for
realistic, changed, and distorted images and long chaotic paths for
abstract images.

However, the realistic conditions tend to also exhibit longer paths
than the changed and distorted condition, as DragGAN could fluidly
move between starting and target images, even if we correct for
actual distance between starting position and user click (Figure 6,

right). For changed and distorted images, the paths we found tended
to be shorter. This difference in flows was not observed in the
experimental data.

Finally, we acknowledge that optical flow estimators are designed
to estimate the (non-rigid) projected motion of real-world actions
as seen in video sequences. In our RAFT-based framework, the
analysis is conducted on pairs of adjacent frames. We observe that
for the realistic, changed, and distorted conditions, changes in suc-
cessive DragGAN-generated images can be consistently explained
by optical flow. However, the chaotic trajectories in the abstract
condition are often so incoherent that the optical flow estimator
failed to identify correspondences between the images.

We believe that such spatial analysis of image differences will
become more important in follow-up experiments that include
continuous input tasks.

7.2 Reflective Judgement & Cognitive
Dissonance Resolution
Driven by hunger, a fox tried to reach some grapes
hanging high on the vine but was unable to, although
he leaped with all his strength. As he went away, the
fox remarked “Oh, you aren’t even ripe yet! I don’t need
any sour grapes.”

– Fable Attributed to Gaius Julius Phaedrus
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While it is not surprising based on previous studies that have
found similar effects, it is quite striking that the magnitude estima-
tion results are in such stark contradiction to the temporal binding
results. They are, however, also measuring very different things.
While the temporal binding result is indicative of cognitive pro-
cesses that happenwhile the interaction is occurring, the magnitude
estimation occurs upon reflection on the outcome and on one’s role
in creating it. While the personal stories we tell ourselves do not
feature in the temporal binding measures, they are an essential
feature of the reflective evaluation that occurred in the magnitude
estimation. Here, our need to create cohesive self-narratives is a
driving force that shapes how we perceive the interaction. Much
like the Fox who states that the grapes must be sour when he real-
izes that he cannot reach them, the users also adapt their responses
to match their mental self model.

This way of adapting personal narratives is an essential part of
human cognition. In fact, it is so ingrained, that studies have shown
even people who are unable to make new short term memories and,
therefore, are unable to remember what caused them to create such
post-hoc biases, display the tendency to adjust their beliefs to fit
such narratives [56].

The narrative view of agency [98] may prove particularly rele-
vant in understanding human-AI interaction and GenAI in particu-
lar. In simple interactions with non-intelligent objects, exclusivity is
framed around the question ‘Did I do that?’ The choice is binary. Ei-
ther I did it, or I did not. The question becomes more complex when
we interact with AI. Now it is not enough to ask ’Did I do that?’
We can also ask ’Did the AI do that?’ Inconsistency and the lack
of exclusivity have the potential to diminish people’s instinctive
feeling of agency. In such situations, an explanation and a reflective
judgment regarding agency is required. People consider their role
and the role of the AI. Their judgment is based on the story they can
plausibly tell, rather than a pre-reflective innate sense of agency.

7.3 Implications for Designing Interactions
with GenAI

Currently, interfaces with GenAI usually deploy a genie metaphor.
The GenAI is portrayed as an agent that we communicate with as an
other, in strong contrast to the tool-metaphors otherwise prevalent
in interacting with computers. With a few notable exceptions [58,
61], the details of how this is implemented are still often reminiscent
of early command-line interfaces. This shows that there is still room
for much innovation in the development of the interfaces we have
for interacting with GenAI algorithms.

While HCI is continuously evolving, new technologies often
spawn entire new subfields of research; for instance, “the rise of
robots” led to Human Robot Interaction (HRI), a field distinct from
HCI due to the physical nature of robots and their ability to interact
with the physical world [99]. Similarly, we argue that the current de-
velopments in GenAI will require its own context-specific approach
to interface design. Not only do we need new creative approaches
towards using GenAI algorithms that go beyond command-line
paradigms, these new interfaces will also need to deal with themes
such as attribution and control.

Our study, once again, highlights the difference between the
pre-reflective sense of agency and the judgment of agency. Because

the sense of agency is purely subconscious and the judgment of
agency is what we consciously have access to, a large body of HCI
work [49, 50, 90] focuses on judgments. However, we argue that the
judgments are based on the sense, modulated by one’s context and
personal narrative. As this personal narrative is typically outside
the scope of what can be influenced by a simple interface, explicitly
designing for the pre-reflective sense is often the most practical
tool available for interface designers.

Here, our study highlights an opportunity for designers. While
there appears to be an inherent contradiction between providing
control to the user and allowing GenAI to provide creative and
non-expected input, we did not find such a conflict in our data.
We did not find any difference in temporal binding between the
realistic and the changed conditions. This suggests that it is possible
to maintain users’ sense of agency while enabling GenAI to extend
beyond users’ specific requests.

7.4 Limitations and Future Work
The presented study focuses on GenAI for image generation, specif-
ically a discrete direct image manipulation task. To understand
the extent to which the results are specific to the chosen task and
modality or generally true for interaction with GenAI, it needs to be
contextualized in studies looking at other media (such as text gener-
ation or audio generation) and studies looking at other input types
(such as continuous input or non-direct manipulation tasks). A key
challenge here is identifying agency measures and experimental
methods that can be used across such different contexts.

The present study already highlights some of the complexity
in conducting such experiments. We used interval estimation as a
way to measure temporal binding as an indicator for pre-reflective
agency, as it fits the design of the experiment best. However, gener-
ally speaking, it is not an optimal measure. We also believe that the
interface we used – radio buttons for selecting from a fixed list of
interval times – introduced bias towards the middle (see also the
interesting discussion by Matejka et al [62]). We suggest instead
using a more classical magnitude estimation task, as we did for
Agency Judgements to asess these intervals.

No matter what method used to collect estimates, the traditional
method of using a Libet clock would still be preferred. It would
allow the collection of details on when the binding occurs - for
the action or outcome, or both. However, it would need the partic-
ipants’ full visual attention, which would have caused a problem
with the images shown during this experiment. Alternatives to the
Libet clock have been presented [20], which would also allow the
distinction between action and outcome binding but do not use
a participant’s visual attention. A sensory attenuation approach
is also promising, but identifying a useful implementation in this
context is challenging.

The current study also focuses on a stripped down minimal ap-
plication. To better understand the real-world relevance of different
levels of agency, more complex scenarios, possibly where the user
has an actual stake in the outcome, are required.

7.4.1 Follow-up work. We identify three main avenues for expand-
ing upon this work. The first involves extending the current exper-
imental approach to other media, such as text or audio. The second
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avenue is investigating how different interface design choices influ-
ence agency; for instance, comparing non-direct with direct manip-
ulation or discrete input with continuous input. These questions
can likely be explored using quantitative methods, as demonstrated
in the present paper, through methods suggested by Cornelio et
al. [20], or using a sensory attenuation approach [53]. The third
avenue is providing users with more complex tasks in which they
have a personal stake. Qualitative methods, such as explicitation
approaches [72], may be particularly useful in these scenarios.

We found the dual approach of calculating objective metrics
and comparing them with subjective measures, as explored in our
work, promising. Building on our exploratory analysis, researchers
can formulate clear hypotheses for null-hypothesis testing or other
forms of significance estimation. Such work will help build a better
understanding of how to interpret the results of such experiments.
This is important, as a crucial area for further development is not
only understanding how GenAI design and use affect user agency,
but also improving and developing robust tools and methods for
assessing agency in this context.

8 CONCLUSION
This paper explored user experiences and perceived agency during
GenAI content creation. Agency is closely linked to responsibility
and ownership, which can blur during AI interactions. The paper
examined how different qualities of AI-generated images influ-
enced users’ perceived agency. It showed that the participants felt
a stronger sense of implicit agency when the AI produced abstract
images, while they were more likely to, upon reflection, take credit
for realistic images.

Most importantly, we found that small modifications created
by the changed condition did not influence our measure of pre-
reflective agency. This shows that, in principle, it is possible for
GenAI to introduce novel elements without disrupting the subjec-
tive experience of agency.

When compared with computational measures of image differ-
ences, we found that temporal binding results seem to correlate
with large semantic differences, whereas judgments of agency was
better explained by local differences between images.

With this paper, we contribute towards considering agency as
an active design dimension when designing GenAI interfaces. We
provide an initial experiment and exploratory analysis, which we
hope will act as a point of departure for future experimental work.
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Table 1: All images that have been pre-rendered indicating the model and the qualities on the outcome images. Each cell is one
starting image described by [seed, x, y], indicating the seed within the model and the x and y values of the starting point on the
image.

Lions Humans

stylegan2_lions_512_pytorch stylegan2-afhqwild-512x512 stylegan2-ffhqu-1024x1024.pkl stylegan2-ffhq-512x512.pkl

Realism Distortion Abstraction Correlation Distortion Abstraction Realism Distortion Abstraction Correlation Distortion Abstraction

53, 296, 143 16, 212, 269 36, 318, 271 35, 310, 198 367, 335, 292 19, 375, 250 7, 516, 461 511, 525, 456 550, 669, 559 5, 313, 272 361, 294, 250 397, 304, 257
82, 301, 237 518, 276, 258 638, 250, 213 42, 319, 314 377, 339, 327 30, 308, 219 9, 510, 514 515, 547, 571 568, 546, 530 22, 333, 238 373, 318, 268 406, 334, 264
337, 243, 367 557, 347, 346 957, 268, 190 51, 352, 210 417, 313, 240 40, 377, 305 24, 662, 569 520, 550, 563 653, 681, 432 60, 296, 253 379, 309, 259 413, 312, 288
475, 330, 226 247, 306, 241 32, 611, 573 63, 285, 254
503, 293, 218 258, 366, 261 74, 488, 535 163, 289, 226
777, 209, 205 365, 340, 233 472, 129, 925 352, 310, 250
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